Green's Relations in Finite Transformation Semigroups
نویسندگان
چکیده
We consider the complexity of Green’s relations when the semigroup is given by transformations on a finite set. Green’s relations can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes then correspond to the strongly connected components. It is not difficult to show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for constant alphabet is rather involved. Our results also apply to automata and their syntactic semigroups.
منابع مشابه
On certain semigroups of transformations that preserve double direction equivalence
Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).
متن کاملTRANSFORMATION SEMIGROUPS AND TRANSFORMED DIMENSIONS
In the transformation semigroup (X, S) we introduce the height of a closed nonempty invariant subset of X, define the transformed dimension of nonempty subset S of X and obtain some results and relations.
متن کاملOn the Graphs Related to Green Relations of Finite Semigroups
In this paper we develop an analog of the notion of the con- jugacy graph of nite groups for the nite semigroups by considering the Green relations of a nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a nite semigroup S , we first atte...
متن کاملSemigroups with inverse skeletons and Zappa-Sz$acute{rm e}$p products
The aim of this paper is to study semigroups possessing $E$-regular elements, where an element $a$ of a semigroup $S$ is {em $E$-regular} if $a$ has an inverse $a^circ$ such that $aa^circ,a^circ a$ lie in $ Esubseteq E(S)$. Where $S$ possesses `enough' (in a precisely defined way) $E$-regular elements, analogues of Green's lemmas and even of Green's theorem hold, where Green's relations ${mathc...
متن کاملThe Structure of Completely Regular Semigroups 213
The principal result is a construction of completely regular semigroups in terms of semilattices of Rees matrix semigroups and their translational hulls. The main body of the paper is occupied by considerations of various special cases based on the behavior of either Green's relations or idempotents. The influence of these special cases on the construction in question is studied in considerable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017